Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundary Harnack principle and gradient estimates for fractional Laplacian perturbed by non-local operators (1501.02023v2)

Published 9 Jan 2015 in math.PR

Abstract: Suppose $d\ge 2$ and $0<\beta<\alpha<2$. We consider the non-local operator $\mathcal{L}{b}=\Delta{\alpha/2}+\mathcal{S}{b}$, where $$\mathcal{S}{b}f(x):=\lim_{\varepsilon\to 0}\mathcal{A}(d,-\beta)\int_{|z|>\varepsilon}\left(f(x+z)-f(x)\right)\frac{b(x,z)}{|z|{d+\beta}}\,dy.$$ Here $b(x,z)$ is a bounded measurable function on $\mathbb{R}{d}\times\mathbb{R}{d}$ that is symmetric in $z$, and $\mathcal{A}(d,-\beta)$ is a normalizing constant so that when $b(x, z)\equiv 1$, $\mathcal{S}{b}$ becomes the fractional Laplacian $\Delta{\beta/2}:=-(-\Delta){\beta/2}$. In other words, $$\mathcal{L}{b}f(x):=\lim_{\varepsilon\to 0}\mathcal{A}(d,-\beta)\int_{|z|>\varepsilon}\left(f(x+z)-f(x)\right) jb(x, z)\,dz,$$ where $jb(x, z):= \mathcal{A}(d,-\alpha) |z|{-(d+\alpha)}+ \mathcal{A}(d,-\beta) b(x, z)|z|{-(d+\beta)}$. It is recently established in Chen and Wang [arXiv:1312.7594 [math.PR]] that, when $jb(x, z)\geq 0$ on $\mathbb{R}d\times \mathbb{R}d$, there is a conservative Feller process $X{b}$ having $\mathcal{L}b$ as its infinitesimal generator. In this paper we establish, under certain conditions on $b$, a uniform boundary Harnack principle for harmonic functions of $Xb$ (or equivalently, of $\mathcal{L}b$) in any $\kappa$-fat open set. We further establish uniform gradient estimates for non-negative harmonic functions of $X{b}$ in open sets.

Summary

We haven't generated a summary for this paper yet.