Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adjusted Haar Wavelet for Application in the Power Systems Disturbance Analysis (1503.05287v1)

Published 18 Mar 2015 in cs.OH

Abstract: Abrupt change detection based on the wavelet transform and threshold method is very effective in detecting the abrupt changes and hence segmenting the signals recorded during disturbances in the electrical power network. The wavelet method estimates the time-instants of the changes in the signal model parameters during the pre-fault condition, after initiation of fault, after circuit-breaker opening and auto-reclosure. Certain kinds of disturbance signals do not show distinct abrupt changes in the signal parameters. In those cases, the standard mother wavelets fail to achieve correct event-specific segmentations. A new adjustment technique to the standard Haar wavelet is proposed in this paper, by introducing 2n adjusting zeros in the Haar wavelet scaling filter, n being a positive integer. This technique is quite effective in segmenting those fault signals into pre- and post-fault segments, and it is an improvement over the standard mother wavelets for this application. This paper presents many practical examples where recorded signals from the power network in South Africa have been used.

Citations (31)

Summary

We haven't generated a summary for this paper yet.