Papers
Topics
Authors
Recent
2000 character limit reached

Random Coding Error Exponents for the Two-User Interference Channel

Published 9 Mar 2015 in cs.IT and math.IT | (1503.02389v2)

Abstract: This paper is about deriving lower bounds on the error exponents for the two-user interference channel under the random coding regime for several ensembles. Specifically, we first analyze the standard random coding ensemble, where the codebooks are comprised of independently and identically distributed (i.i.d.) codewords. For this ensemble, we focus on optimum decoding, which is in contrast to other, suboptimal decoding rules that have been used in the literature (e.g., joint typicality decoding, treating interference as noise, etc.). The fact that the interfering signal is a codeword, rather than an i.i.d. noise process, complicates the application of conventional techniques of performance analysis of the optimum decoder. Also, unfortunately, these conventional techniques result in loose bounds. Using analytical tools rooted in statistical physics, as well as advanced union bounds, we derive single-letter formulas for the random coding error exponents. We compare our results with the best known lower bound on the error exponent, and show that our exponents can be strictly better. Then, in the second part of this paper, we consider more complicated coding ensembles, and find a lower bound on the error exponent associated with the celebrated Han-Kobayashi (HK) random coding ensemble, which is based on superposition coding.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.