Scale-Free Algorithms for Online Linear Optimization
Abstract: We design algorithms for online linear optimization that have optimal regret and at the same time do not need to know any upper or lower bounds on the norm of the loss vectors. We achieve adaptiveness to norms of loss vectors by scale invariance, i.e., our algorithms make exactly the same decisions if the sequence of loss vectors is multiplied by any positive constant. Our algorithms work for any decision set, bounded or unbounded. For unbounded decisions sets, these are the first truly adaptive algorithms for online linear optimization.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.