Papers
Topics
Authors
Recent
2000 character limit reached

Scale-Free Algorithms for Online Linear Optimization

Published 19 Feb 2015 in cs.LG and math.OC | (1502.05744v2)

Abstract: We design algorithms for online linear optimization that have optimal regret and at the same time do not need to know any upper or lower bounds on the norm of the loss vectors. We achieve adaptiveness to norms of loss vectors by scale invariance, i.e., our algorithms make exactly the same decisions if the sequence of loss vectors is multiplied by any positive constant. Our algorithms work for any decision set, bounded or unbounded. For unbounded decisions sets, these are the first truly adaptive algorithms for online linear optimization.

Citations (51)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.