Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Online Convex Optimization with Minimax Optimal Second-Order Dynamic Regret (1907.00497v3)

Published 30 Jun 2019 in math.OC and cs.LG

Abstract: We introduce an online convex optimization algorithm which utilizes projected subgradient descent with optimal adaptive learning rates. Our method provides second-order minimax-optimal dynamic regret guarantee (i.e. dependent on the sum of squared subgradient norms) for a sequence of general convex functions, which may not have strong convexity, smoothness, exp-concavity or even Lipschitz-continuity. The regret guarantee is against any comparator decision sequence with bounded path variation (i.e. sum of the distances between successive decisions). We generate the lower bound of the worst-case second-order dynamic regret by incorporating actual subgradient norms. We show that this lower bound matches with our regret guarantee within a constant factor, which makes our algorithm minimax optimal. We also derive the extension for learning in each decision coordinate individually. We demonstrate how to best preserve our regret guarantee in a truly online manner, when the bound on path variation of the comparator sequence grows in time or the feedback regarding such bound arrives partially as time goes on. We further build on our algorithm to eliminate the need of any knowledge on the comparator path variation, and provide minimax optimal second-order regret guarantees with no a priori information. Our approach can compete against all comparator sequences simultaneously (universally) in a minimax optimal manner, i.e. each regret guarantee depends on the respective comparator path variation. We discuss modifications to our approach which address complexity reductions for time, computation and memory. We further improve our results by making the regret guarantees also dependent on comparator sets' diameters in addition to the respective path variations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hakan Gokcesu (39 papers)
  2. Suleyman S. Kozat (50 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.