Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Gradient Learning on Time Series under Elastic Transformations (1502.04843v2)

Published 17 Feb 2015 in cs.LG

Abstract: The majority of machine learning algorithms assumes that objects are represented as vectors. But often the objects we want to learn on are more naturally represented by other data structures such as sequences and time series. For these representations many standard learning algorithms are unavailable. We generalize gradient-based learning algorithms to time series under dynamic time warping. To this end, we introduce elastic functions, which extend functions on time series to matrix spaces. Necessary conditions are presented under which generalized gradient learning on time series is consistent. We indicate how results carry over to arbitrary elastic distance functions and to sequences consisting of symbolic elements. Specifically, four linear classifiers are extended to time series under dynamic time warping and applied to benchmark datasets. Results indicate that generalized gradient learning via elastic functions have the potential to complement the state-of-the-art in statistical pattern recognition on time series.

Summary

We haven't generated a summary for this paper yet.