Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Time Warping Invariant Dictionary Learning for Time Series Classification and Clustering (2306.17690v1)

Published 30 Jun 2023 in stat.ML and cs.LG

Abstract: Dictionary learning is an effective tool for pattern recognition and classification of time series data. Among various dictionary learning techniques, the dynamic time warping (DTW) is commonly used for dealing with temporal delays, scaling, transformation, and many other kinds of temporal misalignments issues. However, the DTW suffers overfitting or information loss due to its discrete nature in aligning time series data. To address this issue, we propose a generalized time warping invariant dictionary learning algorithm in this paper. Our approach features a generalized time warping operator, which consists of linear combinations of continuous basis functions for facilitating continuous temporal warping. The integration of the proposed operator and the dictionary learning is formulated as an optimization problem, where the block coordinate descent method is employed to jointly optimize warping paths, dictionaries, and sparseness coefficients. The optimized results are then used as hyperspace distance measures to feed classification and clustering algorithms. The superiority of the proposed method in terms of dictionary learning, classification, and clustering is validated through ten sets of public datasets in comparing with various benchmark methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. T. Liu, Y. Si, D. Wen, M. Zang, and L. Lang, “Dictionary learning for vq feature extraction in ecg beats classification,” Expert Systems with Applications, vol. 53, pp. 129–137, 2016.
  2. J. Caballero, A. N. Price, D. Rueckert, and J. V. Hajnal, “Dictionary learning and time sparsity for dynamic mr data reconstruction,” IEEE transactions on medical imaging, vol. 33, no. 4, pp. 979–994, 2014.
  3. W. Dong, X. Li, L. Zhang, and G. Shi, “Sparsity-based image denoising via dictionary learning and structural clustering,” in CVPR 2011.   IEEE, 2011, pp. 457–464.
  4. X. Chen, Z. Du, J. Li, X. Li, and H. Zhang, “Compressed sensing based on dictionary learning for extracting impulse components,” Signal Processing, vol. 96, pp. 94–109, 2014.
  5. M. Yang, L. Zhang, X. Feng, and D. Zhang, “Sparse representation based fisher discrimination dictionary learning for image classification,” International Journal of Computer Vision, vol. 109, pp. 209–232, 2014.
  6. I. Ramirez, P. Sprechmann, and G. Sapiro, “Classification and clustering via dictionary learning with structured incoherence and shared features,” in 2010 IEEE Computer Society conference on computer vision and pattern recognition.   IEEE, 2010, pp. 3501–3508.
  7. J. Aach and G. M. Church, “Aligning gene expression time series with time warping algorithms,” Bioinformatics, vol. 17, no. 6, pp. 495–508, 2001.
  8. D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time series.” in KDD workshop, vol. 10.   Seattle, WA, USA:, 1994, pp. 359–370.
  9. B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel principal component analysis,” in Artificial Neural Networks-ICANN’97: 7th International Conference Lausanne, Switzerland, October 8–10, 1997 Proceeedings.   Springer, 2005, pp. 583–588.
  10. H. Van Nguyen, V. M. Patel, N. M. Nasrabadi, and R. Chellappa, “Kernel dictionary learning,” in 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2012, pp. 2021–2024.
  11. J. Yin, Z. Liu, Z. Jin, and W. Yang, “Kernel sparse representation based classification,” Neurocomputing, vol. 77, no. 1, pp. 120–128, 2012.
  12. Z. Chen, W. Zuo, Q. Hu, and L. Lin, “Kernel sparse representation for time series classification,” Information Sciences, vol. 292, pp. 15–26, 2015.
  13. L. Zhang, W.-D. Zhou, P.-C. Chang, J. Liu, Z. Yan, T. Wang, and F.-Z. Li, “Kernel sparse representation-based classifier,” IEEE Transactions on Signal Processing, vol. 60, no. 4, pp. 1684–1695, 2011.
  14. H. Deng, W. Chen, Q. Shen, A. J. Ma, P. C. Yuen, and G. Feng, “Invariant subspace learning for time series data based on dynamic time warping distance,” Pattern Recognition, vol. 102, p. 107210, 2020.
  15. M. Lewicki and T. J. Sejnowski, “Coding time-varying signals using sparse, shift-invariant representations,” Advances in neural information processing systems, vol. 11, 1998.
  16. B. Mailhé, S. Lesage, R. Gribonval, F. Bimbot, and P. Vandergheynst, “Shift-invariant dictionary learning for sparse representations: extending k-svd,” in 2008 16th European Signal Processing Conference.   IEEE, 2008, pp. 1–5.
  17. B. Yang, R. Liu, and X. Chen, “Fault diagnosis for a wind turbine generator bearing via sparse representation and shift-invariant k-svd,” IEEE Transactions on Industrial Informatics, vol. 13, no. 3, pp. 1321–1331, 2017.
  18. G. Zheng, Y. Yang, and J. Carbonell, “Efficient shift-invariant dictionary learning,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 2095–2104.
  19. G. Li, Z. He, J. Tang, J. Deng, X. Liu, and H. Zhu, “Dictionary learning and shift-invariant sparse coding denoising for controlled-source electromagnetic data combined with complementary ensemble empirical mode decompositioncsem data dictionary learning denoising,” Geophysics, vol. 86, no. 3, pp. E185–E198, 2021.
  20. H. Deng, W. Chen, A. J. Ma, Q. Shen, P. C. Yuen, and G. Feng, “Robust shapelets learning: transform-invariant prototypes,” in Pattern Recognition and Computer Vision: First Chinese Conference, PRCV 2018, Guangzhou, China, November 23-26, 2018, Proceedings, Part III 1.   Springer, 2018, pp. 491–502.
  21. S. V. Yazdi and A. Douzal-Chouakria, “Time warp invariant ksvd: Sparse coding and dictionary learning for time series under time warp,” Pattern Recognition Letters, vol. 112, pp. 1–8, 2018.
  22. S. V. Yazdi, A. Douzal-Chouakria, P. Gallinari, and M. Moussallam, “Time warp invariant dictionary learning for time series clustering: application to music data stream analysis,” in Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10–14, 2018, Proceedings, Part I 18.   Springer, 2019, pp. 356–372.
  23. S. Salvador and P. Chan, “Toward accurate dynamic time warping in linear time and space,” Intelligent Data Analysis, vol. 11, no. 5, pp. 561–580, 2007.
  24. S. Chu, E. Keogh, D. Hart, and M. Pazzani, “Iterative deepening dynamic time warping for time series,” in Proceedings of the 2002 SIAM International Conference on Data Mining.   SIAM, 2002, pp. 195–212.
  25. E. J. Keogh and M. J. Pazzani, “Derivative dynamic time warping,” in Proceedings of the 2001 SIAM International Conference on Data Mining (SDM).   Society for Industrial and Applied Mathematics, 2001, pp. 1–11.
  26. Y.-S. Jeong, M. K. Jeong, and O. A. Omitaomu, “Weighted dynamic time warping for time series classification,” Pattern recognition, vol. 44, no. 9, pp. 2231–2240, 2011.
  27. Y. Xie and B. Wiltgen, “Adaptive feature based dynamic time warping,” International Journal of Computer Science and Network Security, vol. 10, no. 1, pp. 264–273, 2010.
  28. J. Zhao and L. Itti, “shapedtw: Shape dynamic time warping,” Pattern Recognition, vol. 74, pp. 171–184, 2018.
  29. F. Zhou and F. De la Torre, “Generalized time warping for multi-modal alignment of human motion,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition.   IEEE, 2012, pp. 1282–1289.
  30. Zhou, Feng and De la Torre, Fernando, “Generalized canonical time warping,” IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 2, pp. 279–294, 2015.
  31. T. Górecki and M. Łuczak, “Non-isometric transforms in time series classification using dtw,” Knowledge-based systems, vol. 61, pp. 98–108, 2014.
  32. R. J. Kate, “Using dynamic time warping distances as features for improved time series classification,” Data Mining and Knowledge Discovery, vol. 30, pp. 283–312, 2016.
  33. H. Du, Z. Li, R. Chen, Z. Yin, Z. Fu, Q. Zhang, X. Xiao, M. Luo, and F. Bao, “Dynamic time warping and spectral clustering based fault detection and diagnosis of railway point machines,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC).   IEEE, 2019, pp. 595–600.
  34. J. Lohrer and M. Lienkamp, “Building representative velocity profiles using fastdtw and spectral clustering,” in 2015 14th International Conference on ITS Telecommunications (ITST).   IEEE, 2015, pp. 45–49.
  35. F. Petitjean, G. Forestier, G. I. Webb, A. E. Nicholson, Y. Chen, and E. Keogh, “Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm,” Knowledge and Information Systems, vol. 47, pp. 1–26, 2016.
  36. S. Soheily-Khah, A. Douzal-Chouakria, and E. Gaussier, “Generalized k-means-based clustering for temporal data under weighted and kernel time warp,” Pattern Recognition Letters, vol. 75, pp. 63–69, 2016.
  37. F. Petitjean, A. Ketterlin, and P. Gançarski, “A global averaging method for dynamic time warping, with applications to clustering,” Pattern recognition, vol. 44, no. 3, pp. 678–693, 2011.
  38. H. Izakian, W. Pedrycz, and I. Jamal, “Fuzzy clustering of time series data using dynamic time warping distance,” Engineering Applications of Artificial Intelligence, vol. 39, pp. 235–244, 2015.
  39. L. Hou, J. Kwok, and J. Zurada, “Efficient learning of timeseries shapelets,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, 2016, p. 1.
  40. J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition via sparse representation,” IEEE transactions on pattern analysis and machine intelligence, vol. 31, no. 2, pp. 210–227, 2008.
  41. E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory, and applications,” IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 11, pp. 2765–2781, 2013.
  42. H. A. Dau, E. Keogh, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi, C. A. Ratanamahatana, Yanping, B. Hu, N. Begum, A. Bagnall, A. Mueen, G. Batista, and Hexagon-ML, “The ucr time series classification archive,” October 2018, https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.
  43. M. Chen, G. AlRegib, and B.-H. Juang, “6dmg: A new 6d motion gesture database,” in Proceedings of the 3rd multimedia systems conference, 2012, pp. 83–88.

Summary

We haven't generated a summary for this paper yet.