Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Improving integrability via absolute summability: a general version of Diestel's Theorem (1502.01970v1)

Published 6 Feb 2015 in math.FA

Abstract: A classical result by J. Diestel establishes that the composition of a summing operator with a (strongly measurable) Pettis integrable function gives a Bochner integrable function. In this paper we show that a much more general result is possible regarding the improvement of the integrability of vector valued functions by the summability of the operator. After proving a general result, we center our attention in the particular case given by the $(p,\sigma)$-absolutely continuous operators, that allows to prove a lot of special results on integration improvement for selected cases of classical Banach spaces ---including $C(K)$, $Lp$ and Hilbert spaces--- and operators ---$p$-summing, $(q,p)$-summing and $p$-approximable operators---.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.