Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VIP: Incorporating Human Cognitive Biases in a Probabilistic Model of Retweeting (1502.00582v1)

Published 2 Feb 2015 in cs.SI

Abstract: Information spread in social media depends on a number of factors, including how the site displays information, how users navigate it to find items of interest, users' tastes, and the `virality' of information, i.e., its propensity to be adopted, or retweeted, upon exposure. Probabilistic models can learn users' tastes from the history of their item adoptions and recommend new items to users. However, current models ignore cognitive biases that are known to affect behavior. Specifically, people pay more attention to items at the top of a list than those in lower positions. As a consequence, items near the top of a user's social media stream have higher visibility, and are more likely to be seen and adopted, than those appearing below. Another bias is due to the item's fitness: some items have a high propensity to spread upon exposure regardless of the interests of adopting users. We propose a probabilistic model that incorporates human cognitive biases and personal relevance in the generative model of information spread. We use the model to predict how messages containing URLs spread on Twitter. Our work shows that models of user behavior that account for cognitive factors can better describe and predict user behavior in social media.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jeon-Hyung Kang (10 papers)
  2. Kristina Lermam (1 paper)
Citations (18)