An elementary proof of convergence to the mean-field equations for an epidemic model
Abstract: It is common to use a compartmental, fluid model described by a system of ordinary differential equations (ODEs) to model disease spread. In addition to their simplicity, these models are also the mean-field approximations of more accurate stochastic models of disease spread on contact networks. For the simplest case of a stochastic susceptible-infected-susceptible (SIS) process (infection with recovery) on a complete network, it has been shown that the fraction of infected nodes converges to the mean-field ODE as the number of nodes increases. However the proofs are not simple, requiring sophisticated probability, partial differential equations (PDE), or infinite systems of ODEs. We provide a short proof in this case for convergence in mean-square on finite time-intervals using a system of two ODEs and a moment inequality and also obtain the first lower bound on the expected fraction of infected nodes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.