Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning from Multiple Sources for Video Summarisation (1501.03069v2)

Published 13 Jan 2015 in cs.CV

Abstract: Many visual surveillance tasks, e.g.video summarisation, is conventionally accomplished through analysing imagerybased features. Relying solely on visual cues for public surveillance video understanding is unreliable, since visual observations obtained from public space CCTV video data are often not sufficiently trustworthy and events of interest can be subtle. On the other hand, non-visual data sources such as weather reports and traffic sensory signals are readily accessible but are not explored jointly to complement visual data for video content analysis and summarisation. In this paper, we present a novel unsupervised framework to learn jointly from both visual and independently-drawn non-visual data sources for discovering meaningful latent structure of surveillance video data. In particular, we investigate ways to cope with discrepant dimension and representation whist associating these heterogeneous data sources, and derive effective mechanism to tolerate with missing and incomplete data from different sources. We show that the proposed multi-source learning framework not only achieves better video content clustering than state-of-the-art methods, but also is capable of accurately inferring missing non-visual semantics from previously unseen videos. In addition, a comprehensive user study is conducted to validate the quality of video summarisation generated using the proposed multi-source model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xiatian Zhu (139 papers)
  2. Chen Change Loy (288 papers)
  3. Shaogang Gong (94 papers)
Citations (25)

Summary

We haven't generated a summary for this paper yet.