Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

High Order Finite Difference Methods on Non-uniform Meshes for Space Fractional Operators (1412.4339v2)

Published 14 Dec 2014 in math.NA

Abstract: In the past decades, the finite difference methods for space fractional operators develop rapidly; to the best of our knowledge, all the existing finite difference schemes, including the first and high order ones, just work on uniform meshes. The nonlocal property of space fractional operator makes it difficult to design the finite difference scheme on non-uniform meshes. This paper provides a basic strategy to derive the first and high order discretization schemes on non-uniform meshes for fractional operators. And the obtained first and second schemes on non-uniform meshes are used to solve space fractional diffusion equations. The error estimates and stability analysis are detailedly performed; and extensive numerical experiments confirm the theoretical analysis or verify the convergence orders.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.