Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Artificial Neural Network Techniques for Prediction of Electric Energy Consumption (1412.2186v1)

Published 6 Dec 2014 in cs.NE and cs.AI

Abstract: Due to imprecision and uncertainties in predicting real world problems, artificial neural network (ANN) techniques have become increasingly useful for modeling and optimization. This paper presents an artificial neural network approach for forecasting electric energy consumption. For effective planning and operation of power systems, optimal forecasting tools are needed for energy operators to maximize profit and also to provide maximum satisfaction to energy consumers. Monthly data for electric energy consumed in the Gaza strip was collected from year 1994 to 2013. Data was trained and the proposed model was validated using 2-Fold and K-Fold cross validation techniques. The model has been tested with actual energy consumption data and yields satisfactory performance.

Citations (7)

Summary

We haven't generated a summary for this paper yet.