Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Nonparametric statistical inference for the context tree of a stationary ergodic process (1411.7650v2)

Published 27 Nov 2014 in math.ST and stat.TH

Abstract: We consider the problem of estimating the context tree of a stationary ergodic process with finite alphabet without imposing additional conditions on the process. As a starting point we introduce a Hamming metric in the space of irreducible context trees and we use the properties of the weak topology in the space of ergodic stationary processes to prove that if the Hamming metric is unbounded, there exist no consistent estimators for the context tree. Even in the bounded case we show that there exist no two-sided confidence bounds. However we prove that one-sided inference is possible in this general setting and we construct a consistent estimator that is a lower bound for the context tree of the process with an explicit formula for the coverage probability. We develop an efficient algorithm to compute the lower bound and we apply the method to test a linguistic hypothesis about the context tree of codified written texts in European Portuguese.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.