An Online Algorithm for Learning Selectivity to Mixture Means (1410.8580v1)
Abstract: We develop a biologically-plausible learning rule called Triplet BCM that provably converges to the class means of general mixture models. This rule generalizes the classical BCM neural rule, and provides a novel interpretation of classical BCM as performing a kind of tensor decomposition. It achieves a substantial generalization over classical BCM by incorporating triplets of samples from the mixtures, which provides a novel information processing interpretation to spike-timing-dependent plasticity. We provide complete proofs of convergence of this learning rule, and an extended discussion of the connection between BCM and tensor learning.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.