Detecting event-related recurrences by symbolic analysis: Applications to human language processing (1410.5580v1)
Abstract: Quasistationarity is ubiquitous in complex dynamical systems. In brain dynamics there is ample evidence that event-related potentials reflect such quasistationary states. In order to detect them from time series, several segmentation techniques have been proposed. In this study we elaborate a recent approach for detecting quasistationary states as recurrence domains by means of recurrence analysis and subsequent symbolisation methods. As a result, recurrence domains are obtained as partition cells that can be further aligned and unified for different realisations. We address two pertinent problems of contemporary recurrence analysis and present possible solutions for them.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.