Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhanced Higgs to $τ^+τ^-$ Searches with Deep Learning (1410.3469v1)

Published 13 Oct 2014 in hep-ph, cs.LG, and hep-ex

Abstract: The Higgs boson is thought to provide the interaction that imparts mass to the fundamental fermions, but while measurements at the Large Hadron Collider (LHC) are consistent with this hypothesis, current analysis techniques lack the statistical power to cross the traditional 5$\sigma$ significance barrier without more data. \emph{Deep learning} techniques have the potential to increase the statistical power of this analysis by \emph{automatically} learning complex, high-level data representations. In this work, deep neural networks are used to detect the decay of the Higgs to a pair of tau leptons. A Bayesian optimization algorithm is used to tune the network architecture and training algorithm hyperparameters, resulting in a deep network of eight non-linear processing layers that improves upon the performance of shallow classifiers even without the use of features specifically engineered by physicists for this application. The improvement in discovery significance is equivalent to an increase in the accumulated dataset of 25\%.

Citations (95)

Summary

We haven't generated a summary for this paper yet.