Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic formulas for the gamma function constructed by bivariate means (1409.6413v1)

Published 23 Sep 2014 in math.CA

Abstract: Let $K,M,N$ denote three bivariate means. In the paper, the author prove the asymptotic formulas for the gamma function have the form of% \begin{equation*} \Gamma \left( x+1\right) \thicksim \sqrt{2\pi }M\left( x+\theta,x+1-\theta \right) {K\left( x+\epsilon ,x+1-\epsilon \right) }e{-N\left( x+\sigma ,x+1-\sigma \right) } \end{equation*}% or% \begin{equation*} \Gamma \left( x+1\right) \thicksim \sqrt{2\pi }M\left( x+\theta ,x+\sigma \right) {K\left( x+\epsilon ,x+1-\epsilon \right) }e{-M\left( x+\theta ,x+\sigma \right) } \end{equation*}% as $x\rightarrow \infty $, where $\epsilon ,\theta ,\sigma $ are fixed real numbers. This idea can be extended to the psi and polygamma functions. As examples, some new asymptotic formulas for the gamma function are presented.

Summary

We haven't generated a summary for this paper yet.