Asymptotic formulas for the gamma function constructed by bivariate means
Abstract: Let $K,M,N$ denote three bivariate means. In the paper, the author prove the asymptotic formulas for the gamma function have the form of% \begin{equation*} \Gamma \left( x+1\right) \thicksim \sqrt{2\pi }M\left( x+\theta,x+1-\theta \right) {K\left( x+\epsilon ,x+1-\epsilon \right) }e{-N\left( x+\sigma ,x+1-\sigma \right) } \end{equation*}% or% \begin{equation*} \Gamma \left( x+1\right) \thicksim \sqrt{2\pi }M\left( x+\theta ,x+\sigma \right) {K\left( x+\epsilon ,x+1-\epsilon \right) }e{-M\left( x+\theta ,x+\sigma \right) } \end{equation*}% as $x\rightarrow \infty $, where $\epsilon ,\theta ,\sigma $ are fixed real numbers. This idea can be extended to the psi and polygamma functions. As examples, some new asymptotic formulas for the gamma function are presented.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.