Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounds for the gamma function (1705.06167v1)

Published 17 May 2017 in math.CA

Abstract: We improve the upper bound of the following inequalities for the gamma function $\Gamma$ due to H. Alzer and the author. \begin{equation*} \exp\left(-\frac{1}{2}\psi(x+1/3)\right)<\frac{\Gamma(x)}{xxe{-x}\sqrt{2\pi}}<\exp\left(-\frac{1}{2}\psi(x)\right). \end{equation*} We also prove the following new inequalities: For $x\geq1$ [ \sqrt{2\pi}xxe{-x}\left(x2+\frac{x}{3}+a_\right){\frac{1}{4}}<\Gamma(x+1)<\sqrt{2\pi}xxe{-x}\left(x2+\frac{x}{3}+a^\right){\frac{1}{4}} ] with the best possible constants $a_=\frac{e4}{4\pi2}-\frac{4}{3}=0.049653963176...$, and $a^=1/18=0.055555...$, and for $x\geq0$ \begin{equation*} \exp\left[x\psi\left(\frac{x}{\log (x+1)}\right)\right]\leq\Gamma(x+1)\leq\exp\left[x\psi\left(\frac{x}{2}+1\right)\right], \end{equation*} where $\psi$ is the digamma function.

Summary

We haven't generated a summary for this paper yet.