Papers
Topics
Authors
Recent
Search
2000 character limit reached

Entanglement area law from specific heat capacity

Published 21 Sep 2014 in quant-ph, cond-mat.stat-mech, cond-mat.str-el, hep-th, math-ph, and math.MP | (1409.5946v3)

Abstract: We study the scaling of entanglement in low-energy states of quantum many-body models on lattices of arbitrary dimensions. We allow for unbounded Hamiltonians such that systems with bosonic degrees of freedom are included. We show that if at low enough temperatures the specific heat capacity of the model decays exponentially with inverse temperature, the entanglement in every low-energy state satisfies an area law (with a logarithmic correction). This behaviour of the heat capacity is typically observed in gapped systems. Assuming merely that the low-temperature specific heat decays polynomially with temperature, we find a subvolume scaling of entanglement. Our results give experimentally verifiable conditions for area laws, show that they are a generic property of low-energy states of matter, and, to the best of our knowledge, constitute the first proof of an area law for unbounded Hamiltonians beyond those that are integrable.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.