Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on Soft Subspace Clustering (1409.5616v2)

Published 19 Sep 2014 in cs.LG

Abstract: Subspace clustering (SC) is a promising clustering technology to identify clusters based on their associations with subspaces in high dimensional spaces. SC can be classified into hard subspace clustering (HSC) and soft subspace clustering (SSC). While HSC algorithms have been extensively studied and well accepted by the scientific community, SSC algorithms are relatively new but gaining more attention in recent years due to better adaptability. In the paper, a comprehensive survey on existing SSC algorithms and the recent development are presented. The SSC algorithms are classified systematically into three main categories, namely, conventional SSC (CSSC), independent SSC (ISSC) and extended SSC (XSSC). The characteristics of these algorithms are highlighted and the potential future development of SSC is also discussed.

Citations (102)

Summary

We haven't generated a summary for this paper yet.