Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rank-Aware Dynamic Migrations and Adaptive Demotions for DRAM Power Management (1409.5567v1)

Published 19 Sep 2014 in cs.PF, cs.AR, and cs.OS

Abstract: Modern DRAM architectures allow a number of low-power states on individual memory ranks for advanced power management. Many previous studies have taken advantage of demotions on low-power states for energy saving. However, most of the demotion schemes are statically performed on a limited number of pre-selected low-power states, and are suboptimal for different workloads and memory architectures. Even worse, the idle periods are often too short for effective power state transitions, especially for memory intensive applications. Wrong decisions on power state transition incur significant energy and delay penalties. In this paper, we propose a novel memory system design named RAMZzz with rank-aware energy saving optimizations including dynamic page migrations and adaptive demotions. Specifically, we group the pages with similar access locality into the same rank with dynamic page migrations. Ranks have their hotness: hot ranks are kept busy for high utilization and cold ranks can have more lengthy idle periods for power state transitions. We further develop adaptive state demotions by considering all low-power states for each rank and a prediction model to estimate the power-down timeout among states. We experimentally compare our algorithm with other energy saving policies with cycle-accurate simulation. Experiments with benchmark workloads show that RAMZzz achieves significant improvement on energy-delay2 and energy consumption over other energy saving techniques.

Citations (18)

Summary

We haven't generated a summary for this paper yet.