2000 character limit reached
Whittaker modules for the derivation Lie algebra of torus with two variables (1409.5207v1)
Published 18 Sep 2014 in math.RT
Abstract: Let $\mathcal{L}$ be the derivation Lie algebra of ${\mathbb C}[t_1{\pm 1},t_2{\pm 1}]$. Given a triangle decomposition $\mathcal{L} =\mathcal{L}{+}\oplus\mathfrak{h}\oplus\mathcal{L}{-}$, we define a nonsingular Lie algebra homomorphism $\psi:\mathcal{L}{+}\rightarrow\mathbb{C}$ and the universal Whittaker $\mathcal{L}$-module $W_{\psi}$ of type $\psi$. We obtain all Whittaker vectors and submodules of $W_{\psi}$, and all simple Whittaker $\mathcal{L}$-modules of type $\psi$.