2000 character limit reached
Toric vector bundles and parliaments of polytopes (1409.3109v3)
Published 10 Sep 2014 in math.AG
Abstract: We introduce a collection of convex polytopes associated to a torus-equivariant vector bundle on a smooth complete toric variety. We show that the lattice points in these polytopes correspond to generators for the space of global sections and we relate edges to jets. Using the polytopes, we also exhibit toric vector bundles that are ample but not globally generated, and toric vector bundles that are ample and globally generated but not very ample.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.