Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Vector bundles on toric varieties (1110.0030v2)

Published 30 Sep 2011 in math.AG

Abstract: CORRECTION. One of the main results in this paper contains a fatal error. We cannot conclude the existence of nontrivial vector bundles on X from the nontriviality of its K-group. The K-group that is computed here is the Grothendieck group of perfect complexes and not vector bundles. Since the varieties are not quasi-projective, existence of nontrivial perfect complexes says nothing about the existence of nontrivial vector bundles. We thank Sam Payne for drawing our attention to the error and Christian Haesemeyer for explanations about the K-theory. Abstract: Following Sam Payne's work, we study the existence problem of nontrivial vector bundles on toric varieties. The first result we prove is that every complete fan admits a nontrivial conewise linear multivalued function. Such functions could potentially be the Chern classes of toric vector bundles. Then we use the results of Corti~nas, Haesemeyer, Walker and Weibel to show that the (non-equivariant) Grothendieck group of the toric 3-fold studied by Payne is large, so the variety has a nontrivial vector bundle. Using the same computation, we show that every toric 3-fold X either has a nontrivial line bundle, or there is a finite surjective toric morphism from Y to X, such that Y has a large Grothendieck group.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.