Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Characterization of Cardio signals by time-frequency domain analysis (1409.1547v2)

Published 4 Sep 2014 in nlin.CD

Abstract: Long term behavior of nonlinear deterministic continuous time signals can be studied in terms of their reconstructed attractors. Reconstructed attractors of a continuous signal are meant to be topologically equivalent representations of the dynamics of the unknown dynamical system which generates the signal. Sometimes, geometry of the attractor or its complexity may give important information on the system of interest. However, if the trajectories of the attractor behave as if they are not coming from continuous system or there exists many spike like structures on the path of the system trajectories, then there is no way to characterize the shape of the attractor. In this article, the traditional attractor reconstruction method is first used for two types of ECG signals: Normal healthy persons (NHP) and Congestive Heart failure patients (CHFP). As common in such a framework, the reconstructed attractors are not at all well formed and hence it is not possible to adequately characterize their geometrical features. Thus, we incorporate frequency domain information to the given time signals. This is done by transforming the signals to a time frequency domain by means of suitable Wavelet transforms (WT). The transformed signal concerns two non homogeneous variables and is still quite difficult to use to reconstruct some dynamics out of it. By applying a suitable mapping, this signal is further converted into integer domain and a new type of 3D plot, called integer lag plot, which characterizes and distinguishes the ECG signals of NHP and CHFP, is finally obtained.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.