Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensemble Learning of Colorectal Cancer Survival Rates (1409.0788v1)

Published 2 Sep 2014 in cs.LG and cs.CE

Abstract: In this paper, we describe a dataset relating to cellular and physical conditions of patients who are operated upon to remove colorectal tumours. This data provides a unique insight into immunological status at the point of tumour removal, tumour classification and post-operative survival. We build on existing research on clustering and machine learning facets of this data to demonstrate a role for an ensemble approach to highlighting patients with clearer prognosis parameters. Results for survival prediction using 3 different approaches are shown for a subset of the data which is most difficult to model. The performance of each model individually is compared with subsets of the data where some agreement is reached for multiple models. Significant improvements in model accuracy on an unseen test set can be achieved for patients where agreement between models is achieved.

Citations (3)

Summary

We haven't generated a summary for this paper yet.