Papers
Topics
Authors
Recent
Search
2000 character limit reached

Computation of lower bounds for the induced L2 norm of LPV systems

Published 28 Aug 2014 in cs.SY | (1408.6809v1)

Abstract: Determining the induced L2 norm of a linear, parameter-varying (LPV) system is an integral part of many analysis and robust control design procedures. Most prior work has focused on efficiently computing upper bounds for the induced L2 norm. The conditions for upper bounds are typically based on scaled small-gain theorems with dynamic multipliers or dissipation inequalities with parameter dependent Lyapunov functions. This paper presents a complementary algorithm to compute lower bounds for the induced L2 norm. The proposed approach computes a lower bound on the gain by restricting the parameter trajectory to be a periodic signal. This restriction enables the use of recent results for exact calculation of the L2 norm for a periodic linear time varying system. The proposed lower bound algorithm has two benefits. First, the lower bound complements standard upper bound techniques. Specifically, a small gap between the bounds indicates that further computation, e.g. upper bounds with more complex Lyapunov functions, is unnecessary. Second, the lower bound algorithm returns a bad parameter trajectory for the LPV system that can be further analyzed to provide insight into the system performance.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.