Papers
Topics
Authors
Recent
Search
2000 character limit reached

Knowledge Engineering for Planning-Based Hypothesis Generation

Published 27 Aug 2014 in cs.AI | (1408.6520v1)

Abstract: In this paper, we address the knowledge engineering problems for hypothesis generation motivated by applications that require timely exploration of hypotheses under unreliable observations. We looked at two applications: malware detection and intensive care delivery. In intensive care, the goal is to generate plausible hypotheses about the condition of the patient from clinical observations and further refine these hypotheses to create a recovery plan for the patient. Similarly, preventing malware spread within a corporate network involves generating hypotheses from network traffic data and selecting preventive actions. To this end, building on the already established characterization and use of AI planning for similar problems, we propose use of planning for the hypothesis generation problem. However, to deal with uncertainty, incomplete model description and unreliable observations, we need to use a planner capable of generating multiple high-quality plans. To capture the model description we propose a language called LTS++ and a web-based tool that enables the specification of the LTS++ model and a set of observations. We also proposed a 9-step process that helps provide guidance to the domain expert in specifying the LTS++ model. The hypotheses are then generated by running a planner on the translated LTS++ model and the provided trace. The hypotheses can be visualized and shown to the analyst or can be further investigated automatically.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.