Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model Matching Challenge: Benchmarks for Ecore and BPMN Diagrams (1408.5693v1)

Published 25 Aug 2014 in cs.SE

Abstract: In the last couple of years, Model Driven Engineering (MDE) gained a prominent role in the context of software engineering. In the MDE paradigm, models are considered first level artifacts which are iteratively developed by teams of programmers over a period of time. Because of this, dedicated tools for versioning and management of models are needed. A central functionality within this group of tools is model comparison and differencing. In two disjunct research projects, we identified a group of general matching problems where state-of-the-art comparison algorithms delivered low quality results. In this article, we will present five edit operations which are the cause for these low quality results. The reasons why the algorithms fail, as well as possible solutions, are also discussed. These examples can be used as benchmarks by model developers to assess the quality and applicability of a model comparison tool for a given model type.

Citations (16)

Summary

We haven't generated a summary for this paper yet.