Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Quantum Stochastic Calculus and Quantum Gaussian Processes (1408.5686v2)

Published 25 Aug 2014 in math-ph, math.MP, and quant-ph

Abstract: In this lecture we present a brief outline of boson Fock space stochastic calculus based on the creation, conservation and annihilation operators of free field theory, as given in the 1984 paper of Hudson and Parthasarathy. We show how a part of this architecture yields Gaussian fields stationary under a group action. Then we introduce the notion of semigroups of quasifree completely positive maps on the algebra of all bounded operators in the boson Fock space $\Gamma (\mathbb{C}n)$ over $\mathbb{C}n.$ These semigroups are not strongly continuous but their preduals map Gaussian states to Gaussian states. They were first introduced and their generators were shown to be of the Lindblad type by Vanheuverzwijn. They were recently investigated in the context of quantum information theory by Heinosaari, Holevo and Wolf. Here we present the exact noisy Schr\"odinger equation which dilates such a semigroup to a quantum Gaussian Markov process.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.