Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Markov Chains on Orbits of Permutation Groups (1408.2052v1)

Published 9 Aug 2014 in cs.AI

Abstract: We present a novel approach to detecting and utilizing symmetries in probabilistic graphical models with two main contributions. First, we present a scalable approach to computing generating sets of permutation groups representing the symmetries of graphical models. Second, we introduce orbital Markov chains, a novel family of Markov chains leveraging model symmetries to reduce mixing times. We establish an insightful connection between model symmetries and rapid mixing of orbital Markov chains. Thus, we present the first lifted MCMC algorithm for probabilistic graphical models. Both analytical and empirical results demonstrate the effectiveness and efficiency of the approach.

Citations (63)

Summary

We haven't generated a summary for this paper yet.