Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

Limit Theorems and Governing Equations for Levy Walks (1408.1737v1)

Published 8 Aug 2014 in math.PR

Abstract: The Levy Walk is the process with continuous sample paths which arises from consecutive linear motions of i.i.d. lengths with i.i.d. directions. Assuming speed 1 and motions in the domain of beta-stable attraction, we prove functional limit theorems and derive governing pseudo-differential equations for the law of the walker's position. Both Levy Walk and its limit process are continuous and ballistic in the case beta in (0,1). In the case beta in (1,2), the scaling limit of the process is beta-stable and hence discontinuous. This case exhibits an interesting situation in which scaling exponent 1/beta on the process level is seemingly unrelated to the scaling exponent 3-beta of the second moment. For beta = 2, the scaling limit is Brownian motion.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.