Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 464 tok/s Pro
Kimi K2 166 tok/s Pro
2000 character limit reached

Maximum likelihood and pseudo score approaches for parametric time-to-event analysis with informative entry times (1407.8374v1)

Published 31 Jul 2014 in stat.AP

Abstract: We develop a maximum likelihood estimating approach for time-to-event Weibull regression models with outcome-dependent sampling, where sampling of subjects is dependent on the residual fraction of the time left to developing the event of interest. Additionally, we propose a two-stage approach which proceeds by iteratively estimating, through a pseudo score, the Weibull parameters of interest (i.e., the regression parameters) conditional on the inverse probability of sampling weights; and then re-estimating these weights (given the updated Weibull parameter estimates) through the profiled full likelihood. With these two new methods, both the estimated sampling mechanism parameters and the Weibull parameters are consistently estimated under correct specification of the conditional referral distribution. Standard errors for the regression parameters are obtained directly from inverting the observed information matrix in the full likelihood specification and by either calculating bootstrap or robust standard errors for the hybrid pseudo score/profiled likelihood approach. Loss of efficiency with the latter approach is considered. Robustness of the proposed methods to misspecification of the referral mechanism and the time-to-event distribution is also briefly examined. Further, we show how to extend our methods to the family of parametric time-to-event distributions characterized by the generalized gamma distribution. The motivation for these two approaches came from data on time to cirrhosis from hepatitis C viral infection in patients referred to the Edinburgh liver clinic. We analyze these data here.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube