Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multiple solutions of steady-state Poisson-Nernst-Planck equations with steric effects

Published 31 Jul 2014 in math.AP, math-ph, math.MP, and physics.bio-ph | (1407.8252v1)

Abstract: Experiments measuring currents through single protein channels show unstable currents. Channels switch between 'open' or 'closed' states in a spontaneous stochastic process called gating. Currents are either (nearly) zero or at a definite level, characteristic of each type of protein, independent of time, once the channel is open. The steady state Poisson-Nernst-Planck equations with steric effects (PNP-steric equations) describe steady current through the open channel quite well, in a wide variety of conditions. Here we study the existence of multiple solutions of steady state PNP-steric equations to see if they themselves, without modification or augmentation, can describe two levels of current. We prove that there are two steady state solutions of PNP-steric equations for (a) three types of ion species (two types of cations and one type of anion) with a positive constant permanent charge, and (b) four types of ion species (two types of cations and their counter-ions) with a constant permanent charge but no sign condition. The excess currents (due to steric effects) associated with these two steady state solutions are derived and expressed as two distinct formulas. Our results indicate that PNP-steric equations may become a useful model to study spontaneous gating of ion channels. Spontaneous gating is thought to involve small structural changes in the channel protein that perhaps produce large changes in the profiles of free energy that determine ion flow. Gating is known to be modulated by external structures. Both can be included in future extensions of our present analysis.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.