Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The classification of naturally reductive homogeneous spaces in dimensions $n \leq 6$ (1407.4936v2)

Published 18 Jul 2014 in math.DG and math.RT

Abstract: We present a new method for classifying naturally reductive homogeneous spaces -- i.\,e.~homogeneous Riemannian manifolds admitting a metric connection with skew torsion that has parallel torsion \emph{and} curvature. This method is based on a deeper understanding of the holonomy algebra of connections with parallel skew torsion on Riemannian manifolds and the interplay of such a connection with the geometric structure on the given Riemannian manifold. It allows to reproduce by easier arguments the known classifications in dimensions $3,4$, and $5$, and yields as a new result the classification in dimension $6$. In each dimension, one obtains a hierarchy' of degeneracy for the torsion form, which we then treat case by case. For the completely degenerate cases, we obtain results that are independent of the dimension. In some situations, we are able to prove that any Riemannian manifold with parallel skew torsion has to be naturally reductive. We show that ageneric' parallel torsion form defines a quasi-Sasakian structure in dimension $5$ and an almost complex structure in dimension $6$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube