Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the choice number of complete multipartite graphs with part size four (1407.3817v1)

Published 14 Jul 2014 in math.CO

Abstract: Let $\mathrm{ch}(G)$ denote the choice number of a graph $G$, and let $K_{s*k}$ be the complete $k$-partite graph with $s$ vertices in each part. Erd\H{o}s, Rubin, and Taylor showed that $\mathrm{ch}( K_{2*k})=k$, and suggested the problem of determining the choice number of $K_{s*k}.$ The first author established $\mathrm{ch}( K_{3*k})=\left\lceil \frac{4k-1}{3}\right\rceil$. Here we prove $\mathrm{ch} (K_{4*k})=\left\lceil \frac{3k-1}{2}\right\rceil$.

Summary

We haven't generated a summary for this paper yet.