Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey of Named Entity Recognition in Assamese and other Indian Languages (1407.2918v1)

Published 9 Jul 2014 in cs.CL

Abstract: Named Entity Recognition is always important when dealing with major Natural Language Processing tasks such as information extraction, question-answering, machine translation, document summarization etc so in this paper we put forward a survey of Named Entities in Indian Languages with particular reference to Assamese. There are various rule-based and machine learning approaches available for Named Entity Recognition. At the very first of the paper we give an idea of the available approaches for Named Entity Recognition and then we discuss about the related research in this field. Assamese like other Indian languages is agglutinative and suffers from lack of appropriate resources as Named Entity Recognition requires large data sets, gazetteer list, dictionary etc and some useful feature like capitalization as found in English cannot be found in Assamese. Apart from this we also describe some of the issues faced in Assamese while doing Named Entity Recognition.

Citations (7)

Summary

We haven't generated a summary for this paper yet.