2000 character limit reached
On Shrinking Targets for Piecewise Expanding Interval Maps (1406.6785v2)
Published 26 Jun 2014 in math.DS
Abstract: For a map $T \colon [0,1] \to [0,1]$ with an invariant measure $\mu$, we study, for a $\mu$-typical $x$, the set of points $y$ such that the inequality $|Tn x - y| < r_n$ is satisfied for infinitely many $n$. We give a formula for the Hausdorff dimension of this set, under the assumption that $T$ is piecewise expanding and $\mu_\phi$ is a Gibbs measure. In some cases we also show that the set has a large intersection property.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.