Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hybrid Latent Variable Neural Network Model for Item Recommendation (1406.2235v1)

Published 9 Jun 2014 in cs.LG, cs.IR, cs.NE, and stat.ML

Abstract: Collaborative filtering is used to recommend items to a user without requiring a knowledge of the item itself and tends to outperform other techniques. However, collaborative filtering suffers from the cold-start problem, which occurs when an item has not yet been rated or a user has not rated any items. Incorporating additional information, such as item or user descriptions, into collaborative filtering can address the cold-start problem. In this paper, we present a neural network model with latent input variables (latent neural network or LNN) as a hybrid collaborative filtering technique that addresses the cold-start problem. LNN outperforms a broad selection of content-based filters (which make recommendations based on item descriptions) and other hybrid approaches while maintaining the accuracy of state-of-the-art collaborative filtering techniques.

Citations (7)

Summary

We haven't generated a summary for this paper yet.