Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A dynamic gradient approach to Pareto optimization with nonsmooth convex objective functions (1406.1694v1)

Published 6 Jun 2014 in math.OC

Abstract: In a general Hilbert framework, we consider continuous gradient-like dynamical systems for constrained multiobjective optimization involving non-smooth convex objective functions. Our approach is in the line of a previous work where was considered the case of convex di erentiable objective functions. Based on the Yosida regularization of the subdi erential operators involved in the system, we obtain the existence of strong global trajectories. We prove a descent property for each objective function, and the convergence of trajectories to weak Pareto minima. This approach provides a dynamical endogenous weighting of the objective functions. Applications are given to cooperative games, inverse problems, and numerical multiobjective optimization.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.