Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visual Reranking with Improved Image Graph (1406.0680v1)

Published 3 Jun 2014 in cs.CV

Abstract: This paper introduces an improved reranking method for the Bag-of-Words (BoW) based image search. Built on [1], a directed image graph robust to outlier distraction is proposed. In our approach, the relevance among images is encoded in the image graph, based on which the initial rank list is refined. Moreover, we show that the rank-level feature fusion can be adopted in this reranking method as well. Taking advantage of the complementary nature of various features, the reranking performance is further enhanced. Particularly, we exploit the reranking method combining the BoW and color information. Experiments on two benchmark datasets demonstrate that ourmethod yields significant improvements and the reranking results are competitive to the state-of-the-art methods.

Citations (11)

Summary

We haven't generated a summary for this paper yet.