Papers
Topics
Authors
Recent
Search
2000 character limit reached

Experimental Demonstration of Array-level Learning with Phase Change Synaptic Devices

Published 29 May 2014 in cs.NE and cs.AI | (1405.7716v2)

Abstract: The computational performance of the biological brain has long attracted significant interest and has led to inspirations in operating principles, algorithms, and architectures for computing and signal processing. In this work, we focus on hardware implementation of brain-like learning in a brain-inspired architecture. We demonstrate, in hardware, that 2-D crossbar arrays of phase change synaptic devices can achieve associative learning and perform pattern recognition. Device and array-level studies using an experimental 10x10 array of phase change synaptic devices have shown that pattern recognition is robust against synaptic resistance variations and large variations can be tolerated by increasing the number of training iterations. Our measurements show that increase in initial variation from 9 % to 60 % causes required training iterations to increase from 1 to 11.

Citations (47)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.