Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diffusion-Aware Sampling and Estimation in Information Diffusion Networks (1405.7631v1)

Published 29 May 2014 in cs.SI and physics.soc-ph

Abstract: Partially-observed data collected by sampling methods is often being studied to obtain the characteristics of information diffusion networks. However, these methods usually do not consider the behavior of diffusion process. In this paper, we propose a novel two-step (sampling/estimation) measurement framework by utilizing the diffusion process characteristics. To this end, we propose a link-tracing based sampling design which uses the infection times as local information without any knowledge about the latent structure of diffusion network. To correct the bias of sampled data, we introduce three estimators for different categories; link-based, node-based, and cascade-based. To the best of our knowledge, this is the first attempt to introduce a complete measurement framework for diffusion networks. We also show that the estimator plays an important role in correcting the bias of sampling from diffusion networks. Our comprehensive empirical analysis over large synthetic and real datasets demonstrates that in average, the proposed framework outperforms the common BFS and RW sampling methods in terms of link-based characteristics by about 37% and 35%, respectively.

Citations (6)

Summary

We haven't generated a summary for this paper yet.