Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sampling from Diffusion Networks (1405.7258v1)

Published 28 May 2014 in cs.SI and physics.soc-ph

Abstract: The diffusion phenomenon has a remarkable impact on Online Social Networks (OSNs). Gathering diffusion data over these large networks encounters many challenges which can be alleviated by adopting a suitable sampling approach. The contributions of this paper is twofold. First we study the sampling approaches over diffusion networks, and for the first time, classify these approaches into two categories; (1) Structure-based Sampling (SBS), and (2) Diffusion-based Sampling (DBS). The dependency of the former approach to topological features of the network, and unavailability of real diffusion paths in the latter, converts the problem of choosing an appropriate sampling approach to a trade-off. Second, we formally define the diffusion network sampling problem and propose a number of new diffusion-based characteristics to evaluate introduced sampling approaches. Our experiments on large scale synthetic and real datasets show that although DBS performs much better than SBS in higher sampling rates (16% ~ 29% on average), their performances differ about 7% in lower sampling rates. Therefore, in real large scale systems with low sampling rate requirements, SBS would be a better choice according to its lower time complexity in gathering data compared to DBS. Moreover, we show that the introduced sampling approaches (SBS and DBS) play a more important role than the graph exploration techniques such as Breadth-First Search (BFS) and Random Walk (RW) in the analysis of diffusion processes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Motahareh Eslami Mehdiabadi (2 papers)
  2. Hamid R. Rabiee (85 papers)
  3. Mostafa Salehi (19 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.