Papers
Topics
Authors
Recent
2000 character limit reached

Locally Sparse Reconstruction Using the $\ell^{1,\infty}$-Norm (1405.5908v3)

Published 22 May 2014 in math.OC and math.NA

Abstract: This paper discusses the incorporation of local sparsity information, e.g. in each pixel of an image, via minimization of the $\ell{1,\infty}$-norm. We discuss the basic properties of this norm when used as a regularization functional and associated optimization problems, for which we derive equivalent reformulations either more amenable to theory or to numerical computation. Further focus of the analysis is put on the locally 1-sparse case, which is well motivated by some biomedical imaging applications. Our computational approaches are based on alternating direction methods of multipliers (ADMM) and appropriate splittings with augmented Lagrangians. Those are tested for a model scenario related to dynamic positron emission tomography (PET), which is a functional imaging technique in nuclear medicine. The results of this paper provide insight into the potential impact of regularization with the $\ell{1,\infty}$-norm for local sparsity in appropriate settings. However, it also indicates several shortcomings, possibly related to the non-tightness of the functional as a relaxation of the $\ell{0,\infty}$-norm.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.