Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Approach to asymptotically diffusive behavior for Brownian particles in periodic potentials : extracting information from transients (1405.3770v1)

Published 15 May 2014 in cond-mat.stat-mech

Abstract: A Langevin process diffusing in a periodic potential landscape has a time dependent diffusion constant which means that its average mean squared displacement (MSD) only becomes linear at late times. The long time, or effective diffusion constant, can be estimated from the slope of a linear fit of the MSD at late times. Due to the cross over between a short time microscopic diffusion constant, which is independent of the potential, to the effective late time diffusion constant, a linear fit of the MSD will not in general pass through the origin and will have a non-zero constant term. Here we address how to compute the constant term and provide explicit results for Brownian particles in one dimension in periodic potentials. We show that the constant is always positive and that at low temperatures it depends on the curvature of the minimum of the potential. For comparison we also consider the same question for the simpler problem of a symmetric continuous time random walk in discrete space. Here the constant can be positive or negative and can be used to determine the variance of the hopping time distribution.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.