Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Inference Control for Privacy-Preserving Genome Matching (1405.0205v1)

Published 1 May 2014 in cs.CR

Abstract: Privacy is of the utmost importance in genomic matching. Therefore a number of privacy-preserving protocols have been presented using secure computation. Nevertheless, none of these protocols prevents inferences from the result. Goodrich has shown that this resulting information is sufficient for an effective attack on genome databases. In this paper we present an approach that can detect and mitigate such an attack on encrypted messages while still preserving the privacy of both parties. Note that randomization, e.g.~using differential privacy, will almost certainly destroy the utility of the matching result. We combine two known cryptographic primitives -- secure computation of the edit distance and fuzzy commitments -- in order to prevent submission of similar genome sequences. Particularly, we contribute an efficient zero-knowledge proof that the same input has been used in both primitives. We show that using our approach it is feasible to preserve privacy in genome matching and also detect and mitigate Goodrich's attack.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.