Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning with incremental iterative regularization (1405.0042v2)

Published 30 Apr 2014 in stat.ML, cs.LG, math.OC, and math.PR

Abstract: Within a statistical learning setting, we propose and study an iterative regularization algorithm for least squares defined by an incremental gradient method. In particular, we show that, if all other parameters are fixed a priori, the number of passes over the data (epochs) acts as a regularization parameter, and prove strong universal consistency, i.e. almost sure convergence of the risk, as well as sharp finite sample bounds for the iterates. Our results are a step towards understanding the effect of multiple epochs in stochastic gradient techniques in machine learning and rely on integrating statistical and optimization results.

Citations (14)

Summary

We haven't generated a summary for this paper yet.