Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

On the Linear Convergence of the Approximate Proximal Splitting Method for Non-Smooth Convex Optimization (1404.5350v1)

Published 21 Apr 2014 in math.OC

Abstract: Consider the problem of minimizing the sum of two convex functions, one being smooth and the other non-smooth. In this paper, we introduce a general class of approximate proximal splitting (APS) methods for solving such minimization problems. Methods in the APS class include many well-known algorithms such as the proximal splitting method (PSM), the block coordinate descent method (BCD) and the approximate gradient projection methods for smooth convex optimization. We establish the linear convergence of APS methods under a local error bound assumption. Since the latter is known to hold for compressive sensing and sparse group LASSO problems, our analysis implies the linear convergence of the BCD method for these problems without strong convexity assumption.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.